641 research outputs found

    Axial anomalies in gauge theory by exact renormalization group method

    Full text link
    The global chiral symmetry of a SU(2)SU(2) gauge theory is studied in the framework of renormalization group (RG). The theory is defined by the RG flow equations in the infrared cutoff \L and the boundary conditions for the relevant couplings. The physical theory is obtained at \L=0. In our approach the symmetry is implemented by choosing the boundary conditions for the relevant couplings not at the ultraviolet point \L=\L_0\to\infty but at the physical value \L=0. As an illustration, we compute the triangle axial anomalies.Comment: 11 pages + 1 appended EPS figure, LaTeX, UPRF 94-39

    Beta function and infrared renormalons in the exact Wilson renormalization group in Yang-Mills theory

    Get PDF
    We discuss the relation between the Gell-Mann-Low beta function and the ``flowing couplings'' of the Wilsonian action S_\L[\phi] of the exact renormalization group (RG) at the scale \L. This relation involves the ultraviolet region of \L so that the condition of renormalizability is equivalent to the Callan-Symanzik equation. As an illustration, by using the exact RG formulation, we compute the beta function in Yang-Mills theory to one loop (and to two loops for the scalar case). We also study the infrared (IR) renormalons. This formulation is particularly suited for this study since: ii) \L plays the r\^ole of a IR cutoff in Feynman diagrams and non-perturbative effects could be generated as soon as \L becomes small; iiii) by a systematical resummation of higher order corrections the Wilsonian flowing couplings enter directly into the Feynman diagrams with a scale given by the internal loop momenta; iiiiii) these couplings tend to the running coupling at high frequency, they differ at low frequency and remain finite all the way down to zero frequency.Comment: 19 pages, 6 figures, LaTex, uses epsfig, rotatin

    Gauge invariant action at the ultraviolet cutoff

    Get PDF
    We show that it is possible to formulate a gauge theory starting from a local action at the ultraviolet (UV) momentum cutoff which is BRS invariant. One has to require that fields in the UV action and the fields in the effective action are not the same but related by a local field transformation. The few relevant parameters involved in this transformation (six for the SU(2)SU(2) gauge theory), are perturbatively fixed by the gauge symmetry.Comment: 5 pages, Latex, no figure

    BRS "Symmetry", prehistory and history

    Full text link
    Prehistory - Starting from 't Hooft's (1971) we have a short look at Taylor's and Slavnov's works (1971-72) and at the lectures given by Rouet and Stora in Lausanne-1973 which determine the transition from pre-history to history. History - We give a brief account of the main analyses and results of the BRS collaboration concerning the renormalized gauge theories, in particular the method of the regularization independent, algebraic renormalization, the algebraic proof of S-matrix unitarity and that of gauge choice independence of the renormalized physics. We conclude this report with a suggestion to the crucial question: what could remain of BRS invariance beyond perturbation theory.Comment: Talk given at: A Special day in honour of Raymond Stora, Annecy, July 8, 201

    Lower body design of the ‘iCub’ a human-baby like crawling robot

    Get PDF
    The development of robotic cognition and a greater understanding of human cognition form two of the current greatest challenges of science. Within the RobotCub project the goal is the development of an embodied robotic child (iCub) with the physical and ultimately cognitive abilities of a 2frac12 year old human baby. The ultimate goal of this project is to provide the cognition research community with an open human like platform for understanding of cognitive systems through the study of cognitive development. In this paper the design of the mechanisms adopted for lower body and particularly for the leg and the waist are outlined. This is accompanied by discussion on the actuator group realisation in order to meet the torque requirements while achieving the dimensional and weight specifications. Estimated performance measures of the iCub are presented

    On a class of embeddings of massive Yang-Mills theory

    Full text link
    A power-counting renormalizable model into which massive Yang-Mills theory is embedded is analyzed. The model is invariant under a nilpotent BRST differential s. The physical observables of the embedding theory, defined by the cohomology classes of s in the Faddeev-Popov neutral sector, are given by local gauge-invariant quantities constructed only from the field strength and its covariant derivatives.Comment: LATEX, 34 pages. One reference added. Version published in the journa

    Constructive algebraic renormalization of the abelian Higgs-Kibble model

    Get PDF
    We propose an algorithm, based on Algebraic Renormalization, that allows the restoration of Slavnov-Taylor invariance at every order of perturbation expansion for an anomaly-free BRS invariant gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman amplitudes evaluated at zero momentum (and derivatives of them). The approach is here discussed in the case of the abelian Higgs-Kibble model, where the zero momentum limit can be safely performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants and are chosen in order to simplify the calculation of the counterterms. In particular within this model all counterterms involving BRS external sources (anti-fields) can be put to zero with the exception of the fermion sector.Comment: Jul, 1998, 31 page

    Renormalization group flow for SU(2) Yang-Mills theory and gauge invariance

    Full text link
    We study the formulation of the Wilson renormalization group (RG) method for a non-Abelian gauge theory. We analyze the simple case of SU(2)SU(2) and show that the local gauge symmetry can be implemented by suitable boundary conditions for the RG flow. Namely we require that the relevant couplings present in the physical effective action, \ie the coefficients of the field monomials with dimension not larger than four, are fixed to satisfy the Slavnov-Taylor identities. The full action obtained from the RG equation should then satisfy the same identities. This procedure is similar to the one we used in QED. In this way we avoid the cospicuous fine tuning problem which arises if one gives instead the couplings of the bare Lagrangian. To show the practical character of this formulation we deduce the perturbative expansion for the vertex functions in terms of the physical coupling gg at the subtraction point Ό\mu and perform one loop calculations. In particular we analyze to this order some ST identities and compute the nine bare couplings. We give a schematic proof of perturbative renormalizability.Comment: 25 pages + 4 figures appended as PostScript file, LaTeX style, UPRF 93-388, explanations adde

    BRS symmetry for Yang-Mills theory with exact renormalization group

    Full text link
    In the exact renormalization group (RG) flow in the infrared cutoff Λ\Lambda one needs boundary conditions. In a previous paper on SU(2)SU(2) Yang-Mills theory we proposed to use the nine physical relevant couplings of the effective action as boundary conditions at the physical point Λ=0\Lambda=0 (these couplings are defined at some non-vanishing subtraction point Ό≠0\mu \ne 0). In this paper we show perturbatively that it is possible to appropriately fix these couplings in such a way that the full set of Slavnov-Taylor (ST) identities are satisfied. Three couplings are given by the vector and ghost wave function normalization and the three vector coupling at the subtraction point; three of the remaining six are vanishing (\eg the vector mass) and the others are expressed by irrelevant vertices evaluated at the subtraction point. We follow the method used by Becchi to prove ST identities in the RG framework. There the boundary conditions are given at a non-physical point Λ=Λâ€Č≠0\Lambda=\Lambda' \ne 0, so that one avoids the need of a non-vanishing subtraction point.Comment: 22 pages, LaTeX style, University of Parma preprint UPRF 94-41

    Slavnov-Taylor Parameterization for the Quantum Restoration of BRST Symmetries in Anomaly-Free Gauge Theories

    Get PDF
    It is shown that the problem of the recursive restoration of the Slavnov-Taylor (ST) identities at the quantum level for anomaly-free gauge theories is equivalent to the problem of parameterizing the local approximation to the quantum effective action in terms of ST functionals, associated with the cohomology classes of the classical linearized ST operator. The ST functionals of dimension <=4 correspond to the invariant counterterms, those of dimension >4 generate the non-symmetric counterterms upon projection on the action-like sector. At orders higher than one in the loop expansion there are additional contributions to the non-invariant counterterms, arising from known lower order terms. They can also be parameterized by using the ST functionals. We apply the method to Yang-Mills theory in the Landau gauge with an explicit mass term introduced in a BRST-invariant way via a BRST doublet. Despite being non-unitary, this model provides a good example where the method devised in the paper can be applied to derive the most general solution for the action-like part of the quantum effective action, compatible with the fulfillment of the ST identities and the other relevant symmetries of the model, to all orders in the loop expansion. The full dependence of the solution on the normalization conditions is given.Comment: 23 pages. Final version published in the journa
    • 

    corecore